Microprocessor 11 -27 8086/8088 Based Multiprocessing Systems

11.4.8.6 Processor Control Instructions

These instructions do not perform computations. They are used to do tasks such as
initializing the 8087, enabling interrupts, writing the status word to memory, etc.

FINIT/FNINT : - Initializes 8087. Disables interrupt output, sets stack pointer to register
7, sets default status.

FDISI/FNDISI : Disables the 8087 interrupt output pin so that it cannot cause an
interrupt when an exception (error) occurs.

FENI/FNEN! : Enables 8087 interrupt output so it can cause an interrupt when an
exception occurs.

FLDCW source : Loads a status word from a memory location into the 8087 status
register. This instruction should be preceded by the FCLEX
instruction to prevent a possible exception response if an exception
bit in the status word is set.

FSTCW/FNSTCW destination : Copies the 8087 control word to a memory location.
You can determine its current value with 8086
instructions.

FSTSW/FNSTW destination : Copies the 8087 status word to a memory location.

You ean check various status bits with 8086
instructions and take further action on the state of
these bits.

FCLEX/FNCLEX : Clears all of the 8087 exception flag bits in the status register.
Unasserts BUSY and INT outputs.

FSAVE/FNSAVE destination : Copies the 8087 control word, status word, pointers,
and entire register stack to 94-byte area of memory.
After copying all of this the FSAVE/FNSAVE
instruction initializes the 8087.

FRSTOR source : Copies a 94-byte area of memory into the 8087 control register,
status register, pointer registers, and stack registers.

FSTENV/FNSTENV destination : Copies the 8087 control register, status register, tag
words, and exception pointers to a series of
memory locations. This instruction does not copy
the 8087 register stack to memory as the
FSAVE/FNSAVE instruction does.

FLDENV source : Loads the 8087 control register, status register, tag word, and
exception pointers from a named area in memory.

FINCSTP : Increment the 8087 stack pointer by one.

Microprocessor . : 11 -28 8086/8088 Based Multiprocessing Systems

FDECSTP : Decrement stack pointer by one.

FFREE destination : Changes the tag for the specified destination register to empty.
FNOF : Performs no operation. Actually copies ST to ST.

FWAIT : This instruction is actually an 8086 instruction which makes the 8086 wait

until it receives a not busy signal from the 8087 to its TEST pin.

11.4.9 Programming using 8087 Coprocessor

Program 33 : It shows how the assembler automatically adjusts the FLD, FILD, and

FBLD instructions for different size of operands.
.MODEL SMALL

.DATA
DATAl DD 30.0 ; Single- precision
DATA2 DQ 30.0 ; Double-precision
DATA3 DT 30.0 ; Extended-precision
DATA4 DW 30 ; 16-bit integer
DATAS DD 30 ; 32-bit integer
DATAG6 DQ 30 ; 64-bit integer
DATA7 DT 30H ; BCD 30
.CODE
START: MOV AX, GDATA ; [Initialise
MOV DS,AX ; data segment}
FINIT ; Initialise 8087
FLD DATAl
FLD DATA2
FLD DATA3
FILD DATA4
FILD DATAS
FILD DATA6
FBLD DATA7
END START

Program 34 : It calculates the Area of the circle. Area A = nR? where R is the radius of
the circle.

; Program calculates the area of a circle.
; The radius must be stored at memory location RADIUS.

; The result is found in memory location AREA after the program execution.
.MODEL SMALL

.DATA
RADIUS DD 3.4
AREA DD 2
.CODE
START: MOV AX,@DATA ; [Initialise
MOV DS,AX data segment]

FLD RADIUS Loads radius (R) in ST

;
FINIT ; Initialise 8087
FMUL - ST,ST(0) ; Square radius (RX R)

11-29 8086/8088 Based Multiprocessing Systems

Microprocessor
FLDPI
FMUL
FSTP AREA
END START

Program 35 : Procedure to find the roots of the quadratic equations. The roots of

—btb2 -
quadratic equations ax? + bx+c = 0 are, L:a—“aﬁ

and R2 for constants stored in memory locations A, B, and C. The .286 and .287 directives

T to ST

Multiply ST=ST X ST(l)i.e. (X RX R)

Save area

identify the processor as an 80286 and the coprocessor as an 80287.

.286

287
.MODEL SMALL
.DATA

TWO DD 2.0
FOUR DD 4.0
A DD 1.0
B DD - 16.0
o DD + 39.0
R1 DD ?
R2 DD ?
.CODE
START: MOV AX, @DATA

MOV DS, AX

FINIT

FLD TWO
FMUL A

FLD FOUR
FMUL A

FMUL o

FLD B

FMUL B
FSUBR

FSQRT

FLD B

FSUB ST, ST(1)
FDIV ST, ST(2)
FSTP R1

FLD B

FADD

FDIVR

FSTP R2

END START

END

; [Initialise
; data segment]
; Initialise 8087

; form

; form
; form

; form
; form
; form

; Save

s Save

2a

4a
4ac

b2
b2 - 4ac
square root of b%-4ac

root 1

root 2

. The procedure finds the roots R1

Microprocessor - 11 -30 8086/8088 Based Multiprocessing Systems

Program 36 : It determines the resonant frequency of an LC circuit. Equation of
1
resonant frequency f, = ——
Y = mdIC
.MODEL SMALL

.DATA
RESOF DD ? ; resonant frequency
L DD .000001 ; inductance
c DD .000002 ; capacitance
TWO 2.0 ; constant
.CODE
START: MOV AX,@DATA ; [Initialise
MOV DS, AX ; data segment]
FINIT ; Initialise 8087
FLD L ; Get L
FMUL Cc ; Find LC
FSQRT ; Find JLC
FMUL TWO ; Find 24JLC
FLDPI ; Get w
FMUL ; Get 2m/LC
FLD1 ; Get 1
FDIVR ; Form 1/(2n JIC)
FSTP RESOF ; Save frequency
END START
END

Program 37 : Calculates hypotenuse of a right angle triangle, whose sides A and B are
stored in memory named SIDEA and SIDEB

.287 ; tells assembler that coprocessor is 80287
.286 ; tells assembler that processor is 80286
.MODEL SMALL
.DATA
SIDEA DD 3.0
SIDEB DD 4.0
HYPOTENUSE DD O
CW DW 0 ; space for control word
SW DW O space for status word
.CODE
START: MOV AX, @DATA [Initialise
MOV DS, AX data segment]
FINIT Initialise 8087

MOV CW, O3FFH Put the CW in memory which

masks the interrupts and

sets round to even

Load control word in 8087

Put value of SIDEA on top of stack

Square SIDEA

FLDCW CW
FLD SIDEA
FMUL ST, ST(0)

s Ns Ne Ne Ne Ne Wa W N

'

Microprocessor 11-31 8086/8088 Based Multiprocessing Systems

FLD SIDEB ; Put value of SIDEB on top of stack
FMUL ST, ST (0) ; Square SIDEB
FADD ST, ST(0) ; A%+ B2 result at the top of stack.
FSQRT ; JA2+ B? = hypotenuse in top of
stack
FSTSW Sw ; Copy status word to memory
;7 so 8086 can access it
MOV AX, SW ; Bring status to AX to check
; for errors
AND AL, OBFH ; Mask unneeded bits
JNZ LAST ; handle error if found
FSTP HYPOTENUSE ; No error, copy result from 8087 to
; memory.
LAST: NOP

END START

Review Questions

1. Define multiprocessor systems.

2. List the advantages of multiprocessor systems.

3. Write short notes on

a. Closely coupled multiprocessor configuration.
b. Loosely coupled multiprocessor configuration.
List the advantages of loosely coupled systems.
Explain the need for 8087.

Explain the features of 8087.

Explain the functions of following pins of 8087.
a) BUSY b)RQ/GT ¢ INT

Draw and explain the circuit connection between 8087 and 8086,
Explain the interaction between 8086 and 8087,

10. Draw and explain the block diagram of 8087.
11. Draw the bit pattern of the status register of 8087 and explain the significance of each bit.
12. Draw the bit pattern of the control register of 8087 and explain the significance of each bit.
13. Give the data formats used by 8087.
14. Write a short on stack of 8087.
15. Solve the following :

a) Convert 1632125, in short real, long real and temporary real format

b) Convert 4312125, in short real, long real and temporary real format.

NSO A

© %

QQaa

(11 - 32)

Bus Interface

——

12.1 Introduction

There are many alternatives for the design of bus of a computer. One I/O device
interfaced with a particular interface circuitry for one computer may not be suitable with
other computers. Therefore, it may be required to design separate interface for every
combination of 1/0 device and computer, resulting many different interfaces.

In personal computers processor is mounted on the motherboard. The devices which
require high speed connection to the processor, such as the main memory, may be
connected directly to the processor bus. The motherboard usually provides another bus
that can support more devices. The two buses are connected by a circuit called bridge. The
bridge translates the signals and protocols of one bus into those of the other. The devices
connected to the expansion bus appear to be connected to the processor bus directly. The
only difference is that the bridge circuit introduces a small delay in data transfers between
the processor and these devices.

A number of standards have been developed for expansion bus. In this section we
discuss most widely used bus standards such as PCI (Peripheral Component Interconnect),
SCSI (Small Computer System Interface), and USB (Universal Serial Bus). The way these
standards are used in a typical computer system is shown in Fig. 12.1. The PCI standard is
used for expansion bus on the motherboard. The SCSI bus is a high speed parallel bus
intended for devices which need the large amount of data transfer. USB bus is used for
serial transmission to fulfil the needs of devices like keyboard, mouse etc. The ISA
interface is used to interface IDE (Integrated Device Electronics) disk. The Ethernet
interface is used for local area network, providing high speed connection among computer
in the same primises.

12.2 The Peripheral Component Interconnect (PCI) Bus

In early 1992, Intel formed an another industrial group in relation to be PC bus. The
main intension behind the formation of group was to overcome the weaknesses in the ISA
and EISA buses. They designed PCI (Peripheral Component Interface) specifications in
June 1992, and updated in April 1993.

(12 - 1)

Microprocessor 12-2 Bus Interface
Main
Processor memory
I Processor bus
Bridge
PCI bus
Ethernet SCsI Additional usB ISA
interface controller memory controller interface
SCSI bus
I IDE
Video Disk
CD-ROM Disk
controller controller
CD-ROM pisk1] | Disk2 /\
Keyboard Mouse

Fig. 12.1 Bus standards used in typical computer system

12.2.1 Features

1. It is designed to economically meet the I/O requirements of modern systems. It

requires very few chips to implement and support other buses

bus.

attached to the PCI

2. It bypasses the standard 1/O bus, uses the system bus to increase the bus clock
speed and take full advantage of the CPU’s data path.

3. It has an ability to function with a 64-bit data bus.

4. It has high bandwidth. The information is transferred across the PCI bus at
33 MHz, at the full data width of the CPU. When the bus is used in conjunction
with a 32-bit CPU, the bandwidth is 132 Mbytes/sec. It is calculated as follows :

33 MHz x 32-bit = 1,056 Mbits/sec
1,056 Mbits/sec + 8 = 132 Mbytes/sec

5. PCI bus is designed to support a variety of microprocessor based configurations
including both single and multiprocessor systems.

Microprocessor 12-3 Bus Interface

6. The PCI bus can operate concurrently with the processor bus. The CPU can be
processing data in a external cache while the PCI bus is busy transferring
information between other parts of the system.

7. The PCI bus is processor - independent bus that can function as a mezzanine or
peripheral bus.

8. It makes use of synchronous timings and centralized arbitration scheme.

9. It delivers better system performance for high - speed 1/O subsystems (e.g. graphic
display adapters, network interface controllers, disk controllers and so on).

10.The PCI interface contains a 256 bytes configuration memory which allows the
computer to interrogate the PCI interface. This feature allows the system to
automatically configure itself for the PCI plug-board and hence it is referred to as
plug-and-play.

12.2.2 PCI Configurations

As mentioned earlier, PCI bus is designed to support single processor as well as
multiprocessor systems. Fig. 122 (a) shows a typical use of PCI in a single processor
system.

Processor
Cache

Bridge / -

Memory DRAM Audio Nolion

Controller

< PCIBUS >
LAN scsi Expansion Graphics r
l Bus Bridge ph

Base 110 o
Devices

< Expansion BUS >

Fig. 12.2 (a) Conceptual diagram of PCI bus for single processor system

Notice that the processor bus is separate and independent of the PCI bus. The
processor connects to the PCI bus through an integrated circuit called a PCI bridge. The
memory controller and PCI bridge provides tight coupling with the processor and delivers
data at high speeds.

Microprocessor 12-4 Bus Interface

Fig. 12.2 (b) shows a typical use of PCI in a multiprocessor system. As shown in the
Fig. 12.2(b) in multiprocessor systems one or more PCI configurations may be connected
by bridges to the processor’s system bus. Again, the use of bridges keeps the PCI
independent of the processor speed yet provides the ability to receive and deliver data
rapidly.

Processor/ Processor/ Memory
Cache Cache Controller DRAM
< System BUS >
| |
Host Host
Bridge Bridge
| |
PCI BUS PC! BUS
I I I I | I
Expansion Expansion SCSl SCSl LAN LAN
Bus Bridge Bus Bridge
PCi to PCI
Bridge

Fig. 12.2 (b) Conceptual diagrarm: of PCl bus for multiprocessor system

12.2.3 PCI Bus Signals

Fig. 123 (See on next page) shows pinouts for 5 V PCI bus. The PCI bus may be
configured as a 32 or 64 - bit bus. Fig. 12.4 shows 32-bit and 64-bit connectors for PCI bus.

g £l[f ®
Rear
of the

£ gj|f ol
32- Bit Connector

g G ¥
Reai
of the

3> >

Z z 12 2|2 2

64- Bit Connector

Fig. 12.4 The 5 V PCI slot and card configuration

Microprocessor 12-5 Bus interface
Back of computer
Pin # Pin #
1] 12V] TRST | 41] +33V | SBO |
2| 7oK 2V 42 GND
3| GND ™5 43| +33V PAR
4 TDO D1 44| C/MBET AD15
5| +5V Y 45| ADI4 | +33V
6| +5v TNIA 46| GND AD13
7 INTB INTC 47] AD12 AD11
8 INTD +5V 48| AD10 GND
(9 [PRONTT 49| GND AD9
10) 50| KEY KEY
[11 | PRONT 2 51| KEY KEY
12| KEY KEY 52| ADS C/BED |
13| KEY KEY 53| AD7 +33V
14 54| +33Vv AD6
15| GND RST 55| AD5 AD4
16| CLK VIiO C 56| AD3 GND c
5 7 oo il B S 7] oo az_| O
L [18] REQ GND [L 58] AD1 ADO [
g 19| +VI0 8 g 58] V10 V10 3
R [J20 AD31 AD30 E R |60 | ACKEAF | REGWHA E
21| AD29 +33Vv | N 61 +5V +5V N
T 2o []’ i 1 S S
o [23] Aoz AD26 | s o [e3 GND | s
€ l24[ap2s GND l') E Jea| onp CBET l'J
25| +33V | AD24 | E 65| CBEG | CBES | €
26| DBE3 | IDSEL 66| CBE4 | +VIO
27| AD23 | +33V 67| GND | PARe4
28] GND AD22 68] AD63 | ADe62
29| AD21 AD20 69| ADG1 GND
30| AD19 GND 70| +viO AD60
31| +33v | ADIs 71] ADS59 AD58
32| AD17 AD16 72| ADS7 GND
33| CBEZ | +33V 73] GND AD56
34| GND | FRAME 74| AD55 AD54
35| RDY GND 75| ADS3)
36| +33v | TRDY 76| GND AD52
37| DEVSEL | GND 77| ADS51 ADS0
38| GND STOP 78| ADa9 GND
39| TOCK | +33V 79| +Vi0O | AD48
40| PERR | SDONE 80| AD47 AD46
81| AD45 GND
82| GND AD44
83| AD43 AD42
84| AD41)
85| GND AD40
Note : (1) Pins 63-94 exist only on the 64-bit PCI card, 861 AD39 | AD38
(2)+V1I0is 3.3V on a 3.3V board and +5 V on a 5 V board. 87| AD37 GND
(3) Blank pins are reserved. 88 +V IO AD36
89| AD35 AD34
90| AD33 GND
91| GND AD32
92
93 GND
94| GND

Fig. 12.3 The pin-out of the PCI bus

Microprocessor 12-6 Bus Interface

PCI signals are functionally divided into the following groups :

e System Signals : System signals include clock and reset signals (Test clock, clock,
Test Reset, Reset).

e Address and Data Signals : Address and data signals include 64 lines that are
time - multiplexed for addresses and data lines (ADO - AD63). The other signals
from this group such as parity, command and byte enable signals are used to
interpret and validate the signal lines that carry the addresses and data (PAR,
C/BE).

Interface Control Signals : Interface control signals control the timing of transactions

and provide co-ordination among initiators and targets. These are as follows :

FRAME : The current master uses this signal to indicate the start and duration of a
transaction. The signal is asserted at the start and deasserted when the initiator is ready to
begin the final data phase.

IRDY : The current master (initiator) uses this signal to indicate that it is ready to read
or write valid data.

TRDY : The target device (selected device) uses this signal to indicate that it is ready
to read or write valid data.

STOP : This signal indicates that the current target wishes the initiator to stop the
current transaction.

LOCK : The signal indicates an automatic operation that may require multiple
transactions.

IDSEL : This initialization device select signal is used as a chip select during
configuration read and write transactions.

DEVSEL : This device select signal is used by the target to indicate device has
selected.

e Arbitration Signals : Unlike other PCI signals, these are not shared lines.
Rather, each PCI master has its own Request and Grant arbitration signals that
connect it directly to the PCI bus arbiter.

e Error Reporting Signals : These are used to report parity and system errors
(PERR, SERR).

e Interrupt Signals : Like bus arbitration signals these are not shared signals.
Rather, each PCI device has its own interrupt signals (INTA, INTB, INTC,
INTD).

Microprocessor 12-7 Bus Interface

* Cache Support Signals : These signals support snoopy cache protocol (SBO,
SDONE). .

e JTAG/Boundary Scan Signals : These signals support testing procedures defined
in IEEE standard 149.1 (TCK - Test clock, TDI - Test Input, TDO - Test Output,
TMS - Test Mode Select, TRST - Test Reset).

12.2.4 PCI Bus Commands

The PCI bus commands are used to carryout transactions between an initiator, or
master, and a target. These commands are :

* INTA Sequence : INTA sequence is a read command intended for the interrupt
controller on the PCI bus. The byte - sized interrupt vector is returned during a
byte read operation.

* Special Cycle : This command is used by the initiator to send a message to one
or more targets.

* 1/O Read Cycle : I/O read cycle command is used to transfer data from an 1/0
device to the initiator.

® 1/O Write Cycle : I/O write cycle command is used to transfer data from an
initiator to the I/O device.

¢ Memory Read Cycle : Memory read cycle command is used to transfer data
from an memory device on the PCI bus to the initiator

* Memory Write Cycle : Memory write cycle command is used to transfer data
from an initiator to the memory device on the PCI bus.

¢ Configuration Read : This command is used to read configuration information
from the PCI device.

* Configuration Write : This command is used to write configuration information
in the PCI device.

¢ Memory Multiple Access : This is similar to the memory read cycle command,
except that it is usually used to access many data instead of one.

¢ Dual Addressing Cycle : This command is used for transferring address
information to a 64 - bit PCI device, which only contains a 32 - bit data path.

e Line Memory Access : This command is used to read more than two 32 - bit
numbers from the PCI bus.

* Memory Write with Invalidation : This command is used to transfer data in one
or more cycles to memory.

Microprocessor 12-8 Bus Interface

12.2.5 Data Transfer

Every data transfer on the PCI bus is a single transaction consisting of one address
phase and one or more data phases. Let us see the typical read cycle on the PCI bus. All
the events during read cycle are synchronized with the falling edge of the clock cycle. The
devices connected to the bus sample the bus lines on the rising edge at the beginning of a
bus cycle. The events during the bus cycle are explained below and they are also labeled
on the diagram.

1.

The master asserts FRAME signal to indicate the start of a transaction. This signal
remains asserted until initiator is ready to begin the data phase. The initiator puts
the start address on the address bus, and initiates read cycle by activating C/BE
lines.

. At the beginning of clock2, the target device recognizes its address on the address

bus.

. The initiator ceases the address lines and it changes the information on the C/BE

lines to designate which address lines are to be used for transfer for the currently
addressed data from 1 to 4 bytes. The initiator also asserts IRDY to indicate that it
is ready for the first data byte.

. The selected target asserts DEVSEL to indicate that it has recognized its address

and it responds by placing the requested data on the address bus. It then asserts
TRDY to indicate that valid data is present on the bus.

. The initiator reads the data at the beginning of clock 4 and changes the byte enable

lines as needed in preparation for the next read. If target needs some more time to
put next byte of data on the address lines, it informs this by deasserting TRDY
line. Accordingly, the initiator does not read the data lines at the beginning of the
next clock cycle and does not change byte enable during that cycle. This is
illustrated in the fifth clock cycle.

. It may happen that, the target places the data byte but the initiator is not ready to

accept that data byte. The initiator indicates this by deasserting IRDY signal.

. The initiator deasserts FRAME signal indicating that it is last data byte transfer.

8. The initiator deasserts IRDY and the target deasserts TRDY and DEVSEL, returning

bus to the idle state.

Similar kind of handshaking signals are activated during PCI write operation. Here,
the data from initiator is copied into the targeted devices.

Microprocessor 12-9 Bus Interface

FRANE Q1

—t—

]

!

]

1

1

)]

@ | . L

Address {uddress) Data1) Data 2)X Data 3

1

!
|
!
I
]
|
|

[} [} ¢] 1]]
] 1 @ |] @ 1]]]

CBE ——-us owo)(Byte enableX(Byte enable)Byte enable
] T T T T T T T
1]]] 1 1 © 1 1

TRDY — ' | i ; ' T |
N VR LV
I] 1] }] t]]

TRDY — T T : r : i i '
IR ===

DEVSEL — ; 1 \ | i | : i ["—.
i] !] i i]] !
]] 1 T T T T T i
]] [} i 1)]] 1
1 ' | 1 ! 1 ! 1) !
! T L ' T ! ‘
Address Data phase 1 Data phase 2 Data phase 3 (

phase

A

Bus transaction

Fig. 12.5 Timing diagram for PCI read operation

12.2.6 PCI Arbitration

As mentioned earlier PCI bus uses centralized, synchronous arbitration in which each
master has a unique request (REQ) and grant (GNT) signals. These signals are connected
to the central bus arbiter, as shown in the Fig. 12.6.

8 | [5E | [2E | [EE

PCI PCI PCI PCI
Device Device Device Device

PCI Arbiter

Fig. 12.6 PCI bus arbiter

The PCI bus does not specify a particular arbitration algorithm. Therefore, it allows to
use a first in first serve approach, a round-robin approach or priority approach. Let us see
the operation of PCI arbiter with two bus masters in the system. Refer Fig. 12.7.

Microprocessor 12-10 Bus Interface

:1 :2 :3 :4 :5 :6 :7
g 2 N S T
REE——% | L T
m—
T
FRAVE ———=\| —\{ [

st e
TRDY . . H H H :

IR It
TRDY 1 —t T : i

BRI
Address -----==-=-- ~ddrossXpa) - - pasrosHPad)

l—Access A—~{ l+—Access B—
Fig. 12.7 PCI bus arbitration between two masters

1. Let us assume that Master A has asserted its REQ (REQA) signal before the start of
clock 1. The arbiter samples that signal at the beginning of clock 1.

2. The Master B request for bus by asserting its REQ (REQB) signal during clock 1.
3. At the same time, the arbiter asserts GNTA signal to grant bus access to Master A.

4. The Master A samples GNTA signal at the beginning of clock 2 and recognizes that
it has been granted bus access. At this time IRDY and TRDY are deasserted,
indicating that the bus is idle. Therefore, Master A asserts FRAME and \d places the
address information on the address bus and the command on the C/BE bus (it is
not shown in the Fig. 12.5). The MASTER A continues to assert REQA signal if it
has to perform another transaction as shown in the timing diagram.

5. At the beginning of clock 3, the bus arbiter samples all GNT lines and makes an
arbitration decision according to arbitration algorithm used. In this timing diagram
it grants the bus for master B for the next transaction. It then deasserts GNTA,
IRDY, TRDY and FRAME signals and asserts GNTB. However, Master B will not
be able to use the bus until it returns to an idle state.

6. At the beginning of clock 5, Master B finds IRDY and FRAME deasserted and so it

is allowed to take control of the bus by asserting FRAME. It also deasserts the
REQB line because Master B has to perform only one transaction.

Microprocessor 12-11 Bus Interface

12.2.7 Configuration Space

As mentioned earlier the PCI interface contains a 256 byte configuration memory that
allows the computer to interrogate the PCI interface. This allows the system to
automatically configure itself for the PCI plug board.

The Fig. 12.8 shows the map of 256 byte configuration memory. As shown in the
Fig. 12.8 the first 64 bytes of the configuration memory contains the header that holds
information about the PCI interface. The first 32-bit double word contains the unit ID code
and the vendor ID code. When unit is not installed, the unit ID code is FFFFH. It is a
16-bit number (D, - D,). When unit is installed, the unit ID code can be between 0000H
and FFFEH that identifies the unit. The vendor ID (D15 'Do) is allocated by PCI SIG,
which is the governing body for the PCI bus interface standard.

Header
_.-="" | Identificaton |0OH
OO0H -7 Status command | 04H
Header (64 bytes) Class / Power down| 08H
3FH BIST OCH
40H \ 10H
AN Base address
N 24H
Available A Reserved 28H
\
(192 bytes) AR Reserved 2CH
* Extra ROM address | 30H
* Reserved 34H
AR Reserved 38H
FFH N Special 3CH

Fig. 12.8 The map of configuration memory on a PCl expansion board

The class of the PCI interface is identified by class code. The Table 12.1 shows the
current class codes which are assigned by the PCI SIG. The class code is stored in bits
D, -Dy4 of the configuration memory at location 08H.

Microprocessor 12-12 Bus Interface
Class code Function
0000H Older non-VGA devices (not piug and play)
0001H Older VGA devices (not plug and piay)
0100H SCSI controiler
0101H IDE controller
0102H Floopy disk controller
0103H IP! controller
0180H Other hard / floppy controller
0200H Ethemet controller
0201H Token ring controller
0202H FODI
0280H Other network controller
0300H VGA controller
0301H XGA controlier
0380H Other video controller
0400H Video multimedia
0401H Audio multimedia
0480H Other multimedia controller
0500H RAM controller
0501H Flash memory controller
0580H Other memory controller
0600H Host bridge
0601H ISA bridge
0602H EISA bridge
0603H MCA bridge
0604H PCI-PCI bridge
0605H PCMIA bridge
0680H Other bridge
0700H-FFFEH Reserved
FFFFH Unit not in any of the above classes

Table 12.1 : Class codes assigned by PCI SIG

Microprocessor 12-13 Bus Interface

The formats for status word and command words are shown in the Fig. 12.9. These
words are loaded in the location 04 of the configuration memory such that status word
occupies bits D3;-D,, and command word occupies bits Di5-Dy.-

The base address space consists of base addresses for memory, I/O and expansion
ROM. The first two double words of the base address space contain either the 32 or 64-bit
base address for the memory present on the PCI interface. The next double word contains
the base address of the I/O space. It is important to note that, even though the Intel
microprocessor uses 16-bit 1/0 address, there is a provision for expanding the I/O address
to 32-bits.

PER SERI TAB|STA| DEV |DP|FBB

L—’ L Fast cycles (1 = supported)

Data parity (1 = error)

Device timing (00 = fast, 10 = slow,
01 = medium, and 11 = reserved)
Target abort (1 = abort sent)
Target abort (1 = abort received)
Master abort(1 = abort)
Systemerror(1 = ervor)

Parity error (1 = efror)

(a) Status register

BBE|SEE| WC | PER] VPSIMWI| SC | BM IMARIIOR
[[A »

L /O address area (1 = active)

Memory address area (1 = active)

Bus master (1 = yes)

Special cycle (1 = include)

Memory write with invalidation (1 = active)
VGA palette snoop (0 = normal)

Parity error (1 = active)

Wait cycle control (0 = no)

SERR enable (1 = yes)

Back to back cycles (1 = active)

{b) Command register
Fig. 12.9 Bit pattern of the status and control words in the configuration memory

BIOS for PCI

In modern computer system BIOS supports the PCI bus utilities using interrupt vector
1AH with AH = B1H. This utilities are summaried as follows :

Function O1H : BIOS Available ?

Call with : AH = OB1lH
AL = 01H
Returns : AH = 00H if PCI BIOS extension

is available

Microprocessor 12-14 ' Bus Interface

BX = Version number
EDX = ASCII string PCI
Carry = 1 if no PCI extension
present
Function 02H: PCI Unit Search
Call with : AH = OB1lH
AL = 02H
CX = Unit
DX = Manufacturer
SI = index
Returns : AH = result code (see notes)
BX = bus and unit number
Carry = 1 for error
Notes : The result codes are
00H = successful search
81H = function not supported
83H = invalid manufacturerID code
86H = Unit not found
87H = invalid register number
Function O3H : PCI Class Code Search
Call with : AH = OBI1H
AL = 03H
ECX = class code
SI = index
Returns : AH = result code (see notes for
function O02H)
BX = bus and unit number
Carry = 1 for an error
Function O6H : Start Special Cycle
Call with : AH = OBlH
AL = QO6H
BX = bus and unit number
EDX = data
Returns : BH = result code (see notes for
function O02H)
Carry = 1 for error

Notes : The value passed in EDX is sent to
the PCI bus during the address phase

Microprocessor 12-15 Bus Interface

Function 08H Configuration Byte-Sized Read
Call with : AH = O0OB1H
AL = 08H
BX = bus and unit number
DI = register number
Returns : AH = result code (see notes for
function O02H)
CL = data from configuration
register
Carry = 1 for error
Function O09H Configuration WOrd-Sized Read
Call with : AH = 0BlH
AL = 08H
BX = bus and unit number
DI = register number
Returns : AH = result code (see notes for

function 02H)

CX = data from configuration
register
Carry = 1 for error
Function OAH Configuration Doubleword-Sized Read
Call with : AH = O0OBlH
AL = 08H
BX = bus and unit number
Returns : DI = register number
AH = result code (see notes for
register 02H)
ECX = data from configuration
register

Carry 1 for error

‘.

Microprocessor 12-16 Bus Interface

Function OBH Configuration Byte-Sized Write

Call with : AH = OB1lH
AL = O8H
BX = bus and unit number
CL = data to be written to
configuration register
DI = register number
Returns : BH = result code (see notes for
function O02H)
1 for error

Carry

Function OCH Configuration Word-Sized Write

Call with : AH = OBlH
AL = 08H
BX = bus and unit number

CX = data to be written to
configuration register
DI = register number
Returns : AH = result code (see notes for
function 02H)

1 for error

Carry

Function ODH Configuration Doubleword-Sized Write

Call with : AH = OBlH
AL = 08H
BX = bus and unit number

ECX = data to be written to
configuration register
DI = register number
Returns : AH = result code (see notes for
function O02H)
1 for error

Carry
Let us see the program to determine whether the PCI bus extension BIOS is available.

Microprocessor 12-17 Bus Interface

Program :
.MODEL SMALL
.DATA
MES1 DB ‘PCI BIOS IS NOT PRESENTS’
MES2 DB ‘PCI BIOS IS PRESENTS’
.CODE MOV AX,@DATA ; [Initialize data
MOV DS, AX ; segment]
MOV AH,0Bl1H ; access PCI extension
MOV AL, Ol1H ; load function number
INT 1AH ; call interrupt
MOV DX, OFFSET MES2
.IF CARRY?
MOV DX,OFFSET MES1
.ENDIF
MOV AH,9 ; DISPLAY STRING
INT 21H
MOV AH, 4CH ; [Exit to
INT 21H ; DOS]
END

If the BIOS is present, the contents of the configuration memory can be read using the
BIOS functions. It is important to note that the BIOS functions does not support data
transfers between the computer and the PCI interface, the drivers provided with the
interface does the data transfer. These drivers control the flow of data between the
microprocessor and the components found on the PCI interface.

PCI interface

The Fig. 12.10 shows the block diagram of PCI interface. The block diagram shows the
basic components required for PCI interface. The registers, parity block, initiator, target
and vendor ID EPROM are required components of any PCI interface.

. Base address Base address 1 Command
<PERR | F:a"?t register register status
SERR circul 0 1 register

~0wec

IRDY Initiator Interrupt Latency Vendor ID
register timer etc.

30nﬂ‘<m

DEVSEL] yprget

Fig. 12.10 The block diagram of PCI interface

Microprocessor 12-18 Bus Interface

12.3 Parallel Printer Interface(LPT)

The Parallel Printer Interface (LPT) is located on the rear panel of the personal
computer. The LPT stands for line printer. This printer interface gives eight data lines to
transfer data alongwith the control signal usually called hand shaking signals to control
the flow of data. The printer interface can be programmed to receive or send data. This
allows devices rather than printer, such as CD-ROMs, to be connected to and used by the
PC through the parallel port. The centronics protocol is a printer protocol which specifies
the standards for printer interface.

interface details

The computer can have two parallel printer interface, commonly known as parallel
ports (LPT1 and LPT2). The LPT1 is normally at I/O port addresses 378H, 379H and
37AH. The LPT2 port, if present, is located at I/O port addresses 278H, 279H and 27AH.
Let us see the details of both ports, but we use LPT1 port addresses. The Table 12.2
shows the pins and signals for parallel/centronics interface and the Fig. 12.11 shows the
connectors used for parallel/centronics interface.

Signal Description Pin no. for 25 pin | Pin no. for 36 pin
connector connector
STR Strobe to printer 1 1
Do Data bit 0 2 2
-1 D1 Data bit 1 3 3
D2 Data bit 2 4 4
D3 Data bit 3 5 5
Data bit 4 6 6
D5 Data bit 5 7 7
Data bit 6 8 8
D7 Data bit 7 9 9
ACK Acknowledge from 10 10
printer
BUSY Busy from printer 1 11
PAPER Out of paper 12 12
ONLINE Printer is online 13 13
ALF Low if printer issues a 14 14
LF after a CR
ERROR Printer error 15 32
RESET Resets the printer 16 31
SEL Selects the printer 17 36
+5V 5 V from printer ' - 18
Protective ground | Earth ground - 17,
Signal ground Signal ground All other pins All other pins

Note : Bar indicates an active low signal.
Table 12.2 Parallel centronics port pins and signals

Microprocessor 12-19 Bus Interface

1
14
2
15
3
16
.
17
5
18
6
19
7
20
8
21
9
22
10
3
11
24
12
25

25 pin

Fig. 12.11 Connectors used for parallel/centronics port

Control/Handshaking Signals for Printer Interface

a) Input signals for printer :
1. INIT : This signal when activated tells the printer to perform its internal
initialization sequence.
2. STROBE (STB) : This signal when activated tells the printer that valid data is
available on the data bus.

b) Status signals output from printer :

1. ACK : This signal when low indicates that the data character has been accepted
and the printer is ready for the next data. ‘

2. BUSY : This is active high signal. It goes high when printer is not ready to receive
a character. ' -

3. PE : This active high signal goes high when printer is out of paper.

4. SLCT : This signal goes high if the printer is selected for receiving data.

5. ERROR : This active low signal goes low for variety of problem conditions in the
printer.

Microprocessor 12-20 Bus Interface

Fig. 12.12 shows the timing waveforms for transfer of data characters to an IBM
printer using the basic handshake signals.

BUSY L—.'

—+| |=— APPROXIMATELY 5 s

T

ACRNLG _..| |¢_ 0.5 ps (MINIMUM)

DATA _I]_—‘

| }=— 0.5 ps (MINIMUM)
—| | 0.5 ps (MINIMUM)

Fig. 12.12 Timing waveforms for transfer of data characters to an IBM printer

Computer sends the INIT pulse for at least 50 ps, to initialize the printer. Computer
then checks for BUSY low to confirm whether the printer is ready to receive data or not. If
BUSY signal is low (not busy), computer sends an ASCI code on eight parallel data lines
and after atleast 0.5 s, it also sends STB signal to indicate, valid data is available on the
data bus. Computer activates this STB signal for at least 0.5 ps and it also ensures that
valid data is present on the data bus for at least 0.5 s after the STB signal is disabled.
Whenﬂieprinterisreadytoreceivethenextcharacter,itasserisilsﬁsignallowfor
about 5 ps. The rising edge of the ACK signal tells the computer that it can send the next
character. The rising edge of the ACK signal also resets the BUSY signal from the printer.
When computer finds busy low, it sends the next character along with strobe and the
sequence is repeated till the last character transfer.

The system program written to carry out data transfer through parallel port uses data
port (378H), the status register (379H) and an additional status port (37AH). The bits
patterns for these ports are as shown in Fig. 12.13. Refer Fig. 12.13 on next page.

12.3.1 Accepting 16-Bit Input using Parallel Port

The Fig. 12.14 shows the circuit to accept 16-bit input through unidirectional parallel
port. It transfers 4-bit information at a time through the adapter pins 11, 10, 12 and 13 to
S,-S, bits of status register. It is important to note that the signal level on pin 11 is
inverted and stored in S, bit position.

Microprocessor

12-21 Bus Interface

BIDIRECTIONAL (0 = output, 1 = input) __4 [
IRQ (1 = enabled)
DSL (1 = select printer)
INI (0 = initialize printer)
ALF (1 =line feed by printer)
STR (pulse high to print)

The data port that connects to bits D, - D (pins 2 - 9)

7 6 5§ 4 3 2 1 0=-——=Bits

9 8 7 6 5 4 3 2<-——Pins
(a) Data port (378H)

This is a read-only port that retums the information from the printer
through signals such as BUSY, ERROR, and so forth.

7 6 5 4 3 2 1 0=—Bits

NERROR (1 = no error)
ONLINE (1 = online)

PAPER (1 = out of paper)
ACK (1 = acknowledge)
NBUSY (1 = printer not busy)

(b) Status register (379H)

7 6 5§ 4 3 2 1 0-=—Bits

(c) Additional status port (37AH)

Fig. 12.13

Microprocessor 12-22 Bus Interface
74L5244
25 - Pin ~— Y1 Al }l—n0o
Parallel port /___ Y2 A2 b— D1
connector /___ Y3 A3 F—— D2

7o 74L5139] Y4 AMP—D3
014 2 —‘% 10E Ut-A
o)

30 — s A5 }— D4
°© 4o —] Y6 A6 b— D5
o /] Y7 A7 |—— D6

50 — Y8 A8 —— D7

T° o —
10 d 20E u1-B
70
1-0
o ° o
-
90 Y1 Al b— D8
10 . /
Bit-3 — Y2 A2 — D9
Ho 9] — Y3 A3 |—— D10
] 1 O+ Y4 A4 — D11
© Bit-4 1
025 120 — -
Bit1) d70E U2A
13 O \
. Bit-0] Y5 A5 —— D12
] Y6 A6 |—— D13
] Y7 A7 D14
= Y8 A8 |— D15
o 20E u2-8
7415244

Fig. 12.14 16-bit input interface for the unidirectional parallel port

Microprocessor

12-23 Bus Interface

Program : To read 16-bit data from

MOV DX, 378H ;
BACK MOV AL, CH ;
OUT DX, AL
MOV DX, 379H ;
IN AL, DX ;
XRA AL, 80H ;
MOV CL, O04H ;
SAL BX, CL ;
MOV CL, O04H ;
SHR AL, CL ;
OR BL, AL ;
INC CH :
CMP CH, O04H ;
JNZ BACK ;

parallel port

Load port address of data register
Load the control word to enable 4-bit
section

Load port address of status register
Read 4-bits

invert the bit on S; bit position
Shift 16-bit data

4-bit left

[Adjust the bits to D3-D; bit
position by shifting them right by
4-bits]

Save partial data

Increment counter

Check whether counter is 4

if not read the next 4-bit of
data

12.3.2 Interfacing Stepper Motor through Parallel Port

The Fig. 12.15 shows the circuit to interface stepper motor using parallel port.
Bit Dy - D5 are used to excite two ends of two windings. Each winding is center-tapped
and the center-tap is connected to the 12 V supply. The excitation provided by D,-D,
lines is buffered using driver transistors. The transistors are selected such that they can
source rated current for the winding. Motor is rotated by 1.8° per excitation.

Program : To rotate stepper motor clockwise by 90°

EX CODE DB 06H, OAH, O09H, O05H ;

MOV
MoV
MOV
LEA

DX,
CX,
BL,
SI,

378H
32H
04H
EX_CODE
MOV AL, [SI}
oUT DX, AL
CALL Delay
INC SI

DEC BL

JNZ REP1
Loop BACK

BACK

REP1

Code sequence for clockwise
; rotation

; Load port address

; Set repetation count to 504,
; Counts excitation sequence

; Get excitation code

; Send excitation code

; Wait for sometime

; Point to next excitation code
; decrement counter

; if not zero goto REP1

; if CX not zero repeat

Microprocessor 12-24 Bus Interface

+12V

<
Parallel port Drivers) X,

connector
4

Stepper motor

10
014 2 O
30

Ll

5 O

i

6 O

Excitation code in

7 O
Xy X3 Y9 Y, Hex

aO-r—

06H
0AH
09H
05H

9 O
100
"0

1

© a4 =~ o
_a 0 O -
© O =4 -
- a2 o o

||}
3
(o]

Fig. 12.15 Stepper motor interfaced through parallel port

12.3.3 Bidirectional Operation of Parallel Port

The Fig. 12.16 shows the circuit required for bidirectional operation of parallel port. It
consists of octal latch (IC74LS374), octal buffer (IC74LS244), and two 2-input OR gates. For
data output, the output enable (OF) pin of 74LS374 is enabled and it is disable for data
input operation. Bit C5 of the control register controls the OE pin of the latch. In case of
write operation, data is written to the data register (at base address of the port) and it is
latched into 7415374 since OE is enabled. The output of 74LS374 is connected to pin 2 to 9
COM port and therefore, data appears on data lines of COM port. In case of read
operation, the latch (74LS374) is disabled and hence data written to the data register causes
the byte to be latched into 74LS374, but not to appear on the data lines. Now the data
available on the port lines can be read by enabling the 7415244, i.e. reading the data
register. '

Microprocessor 12-25 Bus Interface

74LS374 Paraliel port signal (pin)
DO DO Qo D0 (2)
D1 D1 Q1 D1(3)
D2 D2 Q2 D2 (4)
D3 D3 Q3 D3 (5)
ISA Bus signals D4 D4 Q4 D4 (6)
D5 D5 Q5 D5 (7)
D6 Dé Qé D6 (8)
D7 D7 Q7 D7 (9)
CS5 bit OE
IOW [> > CLK
Y1 A1
Y2 A2
Y3 A3
cs—1 Y4 A4
(Base address) Y5 A5
Y6 A6
Y7 A7
Y8 A8
[—4 10E
I - Pyt
TOR __D 20E
74LS374

Fig. 12.16 Bidirectional function of parallel port

12.3.4 Accepting 16-bit Input using Bidirectional Parallel Port

The Fig. 12.17 shows the circuit to read 16-bit data using bidirectional parallel port.
The circuit consists of two buffers (IC741.5244). It allows to read 8-bits at a time and uses
the data lines (pins 2-9) for data transfer. To carryout data transfer, the C5 bit of the
control register is set to disable latch. Then CO bit of the control register is set to send low
on pin 0. This enables lower buffer to tranfser lower 8-bits by reading the data on the data
lines through data register. Then CO bit of the control register is set to send high on pin 0.
This enables higher buffer to transfer higher 8-bits by reading the data on the data lines
through data register.

Microprocessor 12-26 Bus Interface

7405244
Ve Y1 A1 }——Ds8
Y2 A2 — D9
f/—— Y3 A3 —— D10
10 —1 Y4 A4 b—— D11 Higher
ou 20 — Y5 A5 —— D12 byte
\ [Y6 A6 —— D13
¢ 30 — Y7 A7 |— D14
O 4o \ —1Y8 A8 }|—— D15
© 5§ O \
—-0 \ ——
6 O 10E
70 \ Dc 20E
-0 \
8 O
-0 \
90
10 \ — Y1 A1 b— DO
(1o 10O [—1 Y2 A2 — D1
10 —Y3 A3 b— D2
1° — va A4 |— D3 Lower
025 120 —1 Y5 A5 —— D4 byte
530 — Y6 A6 |—— D5
1] Y7 A7 — D6
=] Y8 A8 F—— D7
10E
20E
Parallel port 7415244

connector
Fig. 12.17 16-bit input interface for the bidirectional parallel port

12.3.5 Interfacing 8-bit ADC using Parallel Port

The Fig. 12.18 shows the interfacing of 8-bit ADC using parallel port. The circuit
interfaces 8-bit successive approximation ADC AD570 to the parallel port. The AD570 uses
two control signals : B/C (Blank and Convert) and DR (Data Ready). B/C signal should
remain high during the conversion process. The B/C is derived from CO bit of the control
register. However, this signal gives a pulse. Thus D flip-flop is used to generate B/C
signal. The output of D flip-flop gives high when CO0 signal activates the clock input of D
flip-flop and it will remain high until the activation of its CLR (clear) input.

As the B/C input is driven low a conversion starts. Upon completion of the
conversion, the DR line goes low and the data appears at the output. Putting the B/C
input high three states the outputs and readies the device for the next conversion. This is
illustrated in Fig. 12.18.

Microprocessor 12-27 Bus Interface

Pulse blanks
data outputs
on rising edge

and starts
conversion
Blanks data outputs on falling edge
Holds data
B/C Start — outputs — 2 pus min
Input conversion - Y = - Start
Conversion e @ sidp new
25 pis -] | 25 ps conversion conversion
DR 1.5 us ~—»- et
Out
500 ns I__ N Indicates
(max) — data ready New data ready
000‘0‘0’0 0’0 0’0‘0 ~ 0‘0’00
Data SEIBIBXK Blank Ko One or Blank
out SZRELXX (open) LKL %% _(open) &% _(open)

Fig. 12.18

The positive edge to B/C input is issued through the bit CO of the control register
(pin 1). The end of conversion is determined by polling the status of DR signal through
the bit 6 of the status register. Thus DR signal is connected to the pin-10 of the connector.
When the conversion is complete, the output operation of the data register is disabled and
converted data is read through data register.

o~
AD570

-y —

e V' VT I, Analog
B2 IN ——Q input
7 1g3
10O § g4
i Bs s
01 2 O4— 3188 BIPOLOFF [—
B7
O 3o} 2 {ps
le) |/ . 14
401 ACOM]
o) Vee - =
5 O—/ o _ —
1o BT DR
6 O-+— -]11 17
L 1o D PREQ
7 O4— b CLK
-0 il
6 Od— TR
—-O
—1-O 9 01—
|, wo
—-O 10
025 120
130
! <]
- Paraliet port
connector

Fig. 12.19 AD570 interfaced to parallel port

Microprocessor 12 -28 Bus Interface

12.4 Universal Serial Bus (USB)

The Universal Serial Bus (USB) was born out of the frustration of PC users experience
trying to connect an incredibly wide range of peripherals to their computers. This was not
possible with th. existing centronics parallel interface and the RS-232 serial port interface.
These interfaces could not handle increasing computer power and the number of
peripherais. They have become bottle-neck of slow communication, with limited options
for expansion. This is the situation that prompted the development of USB. The result is
versatile interface that can replace existing interfaces to low - to moderate - speed standard
and custom peripheral types on computers of all types. USB gives fast and flexible
interface for connecting all kinds of peripherals.

USB is playing a key role in fast growing consumer areas like digital imaging, PC
telephony, and multimedia games, etc. The presence of USB in most new PCs and its
plug-n-play capability, means that PCs and peripherals (such as CD ROM drives, tape and
floppy drives, scanners, printers, video devices, digital cameras, digital speakers,
telephones, modems, keyboards, mice, digital joysticks and others) will automatically
configure and work together, with high degree of reliability, in this exciting new
application areas. USB opens the door to new levels of innovation and its use for input
devices. There are also brand new opportunities of all types of peripherals from printers to
scanners to high speed connection such as Ethernet, DSL, cable and satellite
communications.

USB has advantages that specifically benefit developers, including the hardware
designers who select components and design the circuits, the PC programmers who write
the software that comununicates with USB peripherals, and peripherals programmers who
write the code that recides inside USB peripherals.

12.4.1 USB Features
1. Simple connectivity

USB offers simple connectivity. It reduces the proliferation of cables and wall
transformers. With USB there is no need to open the computer's enclosure to add an
expansion card for each peripheral. A typical PC has two USB ports. You can expand the
number of ports by connecting a USB hub to an existing port. Each hub has additional
ports for attaching more peripherals or hubs.

2. Simple cables

The USB cable connector are keyed so you cannot plug them in wrong. The USB
connectors are slim in contrast to typical RS-232 and parallel connectors. Cable lengths are
limited to 5 metres for 12 Mbps connections and 3 metres for 1.5 Mbps.

Microprocessor 12-29 Bus Interface

3. One interface for many devices

USB is versatile enough to be usable with many kinds of peripherals with no need of
having a different connector and protocols for each peripheral. USB supports all kinds of
data, from slow mouse inputs to digitized audio and compresses video.

4. Automatic configuration

When a user connects a USB peripheral to a powered system, windows automatically
detects the peripheral and loads the appropriate software driver for it. There is no need to
locate and run a setup programme or restart the system before using the peripheral.

S. No user setting

USB peripherals do not have user selectable settings such as port address and interrupt
request (IRQ) lines.

6. Frees hardware resources for other devices

Using USB for as many peripherals as possible frees up IRQ lines for the peripherals
that do require them. The PC does dedicate a series of port addresses and one interrupt
request (IRQ) line to the interface, and also individual peripherals do not require
additional resources. In contrast, each non USB peripheral requires dedicated port
addresses, often an IRQ line, and sometimes an expansion slot (for example a parallel port
card).

7. Hot pluggable

You can install or remove a peripheral regardless of the power state i.e. whether or not
the system and peripheral are powered, they do not damage the PC or peripheral. The
operating system detects when a USB device is attached and readies it for use.

8. Data transfer rates

USB supports three data transfer rates, 480 Mb/s (high-speed), 12 Mb/s (full-speed)
and 1.5 Mb/s (low-speed).

9. Coexistence with IEEE 1394

USB 2.0 and IEEE 1394 offer similar data rate primarily differ in terms of application
s. The USB 2.0 is preferred to be connected for most PC peripherals where as IEEE
4'spﬁmrybrgetisaddiovisualmnsumerdec&onicdevioessuchasdigiml
.incorders, digital VCRs, DVDs, and digital TVs.

10. Refiability

Reliability of USB results from both the hardware design and data transfer protocols.
The hardware specification for USB drivers, receivers and cables eliminate most noise that
mldoﬂurwisemusedamms.haddiﬁmﬂmUSBpmmlanblesdetecﬁngofdata

Microprocessor 12-30 Bus Interface

errors and notifying the senders so it can retransmit. The detecting, notifying, and
retransmitting are typically done in hardware and do not require any programming.

11‘. Low cost

Even though USB is more complex than earlier interfaces, its components and cables
are inexpensive. A device with a USB interface is likely to cost the same or less than its
equivalent older interfaces.

12. Low power consumption

Power circuits and code automatically power down USB peripherals when not in use,
yet keep them ready to respond when needed. In addition to the environmental benefits of
reduce power consumption, this feature is especially useful on battery powered computers
where every milliampere counts.

13. Flexibility

USB's four transfer types and three speed make it feasible for many types of
peripherals.

14. Operating system support

Windows 98 was the first Windows operating system to reliably support USB, and its
successors such as Windows 2000 support USB as well. Other computers and operating
systems also have USB support. ON apple’s iMac, the only peripherals connectors are USB.
Other Macintoshes also support USB, and support is in progress for Linux, NetBSD, and
FreeBSD.

12.4.2 USB System

The Fig. 12.20 shows the basic components of USB system. It consists of USB host, USB
device and USB cable. The USB host is a personal computer (PC) and devices are scanner,
printer etc. There will be only one host in the USB system, however there can be 127
devices in the USB system.

USB Cable

usB usB
Host Device(s)

Fig. 12.20 USB systein

12.4.3 Cables

USB cables are designed to ensure correct connections are always made. By having
different connectors on host and device, it is imposssible to connect, two hosts or two
devices together.

Microprocessor 12-31 Bus Interface

- USB requires a shielded cable containing 4 wires. Two of these, D + and D -, form a
twisted pair responsible for carrying a differential data signal, as well as some
single-ended signal states. (For low speed the data lines may not be twisted). The signals
on these two wires are referenced to the (third) GND wire.

Fig. 12.21 Makeup of USB cable

The fourth wire is called VBUS, and carries a nominal 5 V supply, which may be used
by a device for power.

12.4.4 USB Connector

USB uses different connectors on host and device to enforce correct connections. “A”
Type connector point downstream from a Host or Hub, while "B". Type connector point
uspstream from a USB device or hub.

0
2 3 4
O O O
]

0 g-|c

Fig. 12.22 Type A connector

o a
2 1
3 4
| [=]

Fig. 12.23 Type B connector

Microprocessor 12-32 Bus Interface

Standard "A" and Standard "B" connector Pin Assignments

Contact Number Signal Name Typical Cable Colour
1 VBUS Red
2 D- White
3 D+ Green
4 GND Black
Shell Shield Drain Wire

A mini-B plug has also been defined as an alternative to the standard B connector on
handheld and portable devices. The mini-B connector has a fifth pin, named ID, but it is

not connected.

Mini-B Connector Pin Assignments

Contact Number Signal Name Typical Cable Colour

1 VBUS Red

2 D- White

3 D+ Green

4 ID No connection

5 GND Black

Shell Shield Drain Wire
12345

Fig. 12.24 “Mini B” type connector

12.4.5 USB Data

As mentioned earlier, the USB data signals are biphase signals. They are generated
using a circuit shown in Fig. 12.25.

Usually, IC 75773 from Texas instruments is used as both the differential line driver
and receiver in the above circuit.

The USB uses NRZI (non-return-to zero, inverted) data encoding method for
transmitting data packets. In this method, the signal level does not change for the
transmission of logic 1. However, it is inverted for each change to a logic 0. This is

Microprocessor 12-33 Bus Interface

Transmit
data "‘——‘VVV\(g A o + Data
27
15
75240 USB data
= 15 \
B °
MWW ¢ © — Data
27 \
OE Noise suppression
circuit
+
Receive
data

Fig. 12.25 USB interface using a pair of CMOS buffers

illustrated in Fig. 12.26. In this method data bits are always transmitted beginning with the
least significant bit first, followed by subsequent bits.

t 4+ 0 01 1 01 0 01 0 O

Digital data |——|

NRZI data

Fig. 12.26 NRZI encodinging method
To maintain the signal frequency in the specified range i.e. to achieve synchronization
we have to insert a sync bit in the data stream, if a logic 1 is transmitted for more than six

bits in a row. The process of inserting sync bit is known as bit stuffing. The bit stuffing is
illustrated in Fig. 12.27. Bit stuffing ensures that the receiver can maintain synchronization

for long strings of logic 1s.

\— Stuffed bit

Fig. 12.27 Bit stuffing

Digital data ——t—

NRZI data }
| ;

[——

Microprocessor 12-34 Bus Interface

The Fig. 12.28 shows the flowchart to generate USB data from the raw digital serial

data.
< Start ’
Data absent /Id e

Data present (Send data)

Clear count

Get bit

Invert output

Count = Count + 1

No

Yes

Send sync
bit

1

Clear count

Transmission
over ?

Fig. 12.28

Microprocessor 12-35 Bus Interface

12.4.6 USB Commands

We have seen how USB data is generated. This data is transmitted to particular
receptor with the use of USB commands. The communication begins with the transmission
of the sync byte (80 H). It is followed by the packet identification byte (PID). The PID
contains eight bits, but only the rightmost four bits contain the type of packet. The
leftmost four bits of the PID are the complement form of four rightmost bits. For example,
if a command is 1001, the actual PID byte is 0110 1001. The Table 12.3 shows the available
4-bit PIDs and their 8-bit codes. The PIDs are also used as token indicators, as data
indicators, and for handshaking.

PID Code | Name Type Description
E1H OUT | Token Host — function transation
D2H ACK Handshake| Receiver accepts packet
C3H DataO| Data Data packet PID even
ASH SOF Token Start of frame
69H IN Token Function — host transation
5AH NAK Handshake | Receiver does not accept data
4BH Data1| Data Data packet PID odd
3CH PRE Special Host preamble
2DH Setup | Token Setup command
1EH Stali Token Stalled

Table 12.3 : PID codes and description
The Fig. 12.29 shows the formats of data, token, handshaking and start-of frame

packets used on the USB.
8 bits 1to 1023 Bytes 16 bits

[PO | Data | cre 16 |

(a) Data packet

8bits 7bits 4bits 5 bits
| P | ADDR IENDPICREI

(b) Token packet
8 bits
(c) Handshaking packet
8 bits 11 bits 5 bits

LPID | Frame number ’CRCS,

(d) Start of frame packet
Fig. 12.29 Packet formats

Microprocessor 12-36 Bus Interface .

The data packet begins with PID, then data byte and ends with CRC (cyclic
redundancy check) code. Packets use two types of CRC codes : one is a 5-bit CRC and the
other (used for data packets) is a 16-bit CRC. The 5-bit CRC is generated with the
X5 +X2 +1 polynomial. On the other hand, the 16-bit CRC is generated with the
X16 4+ x15 + X2 +1 polynomial.

The USB uses the ACK (acknowledge) and NAK (Not acknowledge) tokens to
co-ordinate the transfer of data packets between the host system (host is a PC or other
computer that contain two components : controller and a root hub). (A hub is device that
contains one or more connecters or internal connections to USB devices along with the
hardware to enable communicating with each device and the USB device.) Once a data
packet is transferred from the host to the USB device, the USB device either transmits and
ACK or a NAK token back to the host. If the data and CRC are received without error, the
ACK is sent; otherwise, the NAK is sent. If the host receives a NAK token, it retransmits
the data packet until the receiver receives it without error. This method of data transfer is
known as stop and wait flow control. In this method, the host has to wait for the client to
send an ACK or NAK before transferring additional data packets.

12.4.7 USB Host
The USB host does the following basic functions.
. Tt recognises the attachmeit and rereoval of USB devices.
. It installs a device when it is pluged in.
. It manages flow of control information between the host and USB devices.

It manages flow of data between the host and USB devices.

S I R o

. It gathers activity and status information of USB devices.

(=)

. It provides power to low power USB devices connected to the host.

Foosi Device The Fig. 12.30 shows
the connection between
. USB host and USB
device. The USB host
/ constitutes USB host
controller hardware, USB
system software such as
operating system,
controllexr driver, and
USB driver and the client
USB bus software. The client
interface software is a device
B driver for the USB device
Fig. 12.30 Implementation of USB interface that remains resident and

executes on the host.

USB interconnect

Microprocessor 12 - 37 o Bus Interface

12.4.8 USB Device

The USB device does the following basic functions.

1. It responds to all requests made by the host.

2. It monitors the device address in each communication and selects itself for
comminication if it is the addressed device.

3. It sends the data with error correcting bits and it receives data after checking
errors if any. In case of error in data transfer, it requests for retransmission of data.

4. If the USB device is self-powered, it manages its own power supply.

The Fig. 12.31 shows the simple hardware for USB device. It is a composition of USB
bus interface hardware, protocol controller and custom I/O device. The bus interface
hardware contains a Serial Interface Engine (SIE) and a transceiver.

Real world i/0

------ T

Custom I/0 device

Protocol controller
appiication firmware

byte control

Bus interface hardware

POINT

Serial interface engine

Transceiver

e T e ittt ettt R T R PR

i
|
t
1
i
1
I
|
1
I
]
|
i
J
I
|
i
3
I
|
I
|
1
}
|
!
|
}
|
]
|
I
1
END !
|
|
|
1
|
I
i
f
i
¥
t
!
}
!
1
1
}
[}
1
1
1
[}
J
!
]
t
)
t

L B T

D+ D-
Fig. 12.31 Hardware for USB device

Microprocessor 12 -38 Bus Interface

12.4.9 USB Descriptor

The USB device contains a number of descriptors which help to define what the device
is capable of. The descriptor is a data structure which contains information about the
device and its properties. Before going to see the details of descriptor we need to have an
idea what do we mean by the configurations, interfaces and end points.

Configurations

The architecture of generic USB device is multi-layered. A device consists of one or
more configurations, each of which describes a possible setting the device can be
programmed into. Such settings can include the power characteristics of the configuration
(for example, the maximum power consumed by the configuration and whether it is
self-powered or not) and whether the configuration supports remote wake-up.

A device can have only one configuration at a time. To change configuraion the whole
device would have to stop functioning. Different configurations might be used, for
example, to specify different current requirements, as the current required is defined in the
configuration descriptor.

Interface

Each configuration contains one or more interfaces that are accessible after the
configuration is set. An interface provides the definitions of the functions available within
the device and may even contain alternate settings within a single interface. For example,
an interface for an audio device may have different settings we can select for different
bandwidths.

Device Descnptor

/\.

Conﬁguratlon Confi guratlon)
Interface 1 Interface O Interface 0 Interface 1
AS1 ASO AS1 ASO
‘ End:mint > (Endgoint)(Endgoint) ' More endpoint descriptors i
\ }

Fig. 12.32 USB descriptor

Interface O
ASO

Microprocessor 12-39 Bus Interface

Endpoint

Endpoints are the unidirectional access points of communicating with a device. They
provide buffers to temporarily store incoming or outgoing data from the device. Each
endpoint has a unique address within a configuration, the endpoints number plus its
direction. The endpoint has characteristics that describe the communication it supports,
such as transfer type, maximum packet size, and transfer direction (input or output). There
may be multiple endpoints inside a device. Each device has at least one endpoint —
"endpoint 0"— which is used as a control endpoint. It must be able to both send and
receive data, but can only communicate in one direction at & time. Typically, when a-
device receives data such as an Out or Setup command from the host, this data is stored
in the endpoint and the device's microporcessor is interrupted and works on this data.
When a device receives an In command that is addressed to it from the host, data for the
host that is stored in the endpoint is send to the host.

The data endpoint supports unidirectional flow of data i.e. they can either receive data
or send data.

Standard Descriptors

* Device descriptor : It describes general information about the device, like
Vendor, Product and Revision ID, supported device class, subclass and protocol
if applicable, maximum packet size for the default endpoint, etc. A USB device
has only one device descriptor.

¢ Configuration descriptors : They describe the number of interfaces in this
configuration, suspend and resume functionalily supported and power
requirements.

* Interface descriptors : They describe interface class, subclass and protocol if
applicable number of alternate settings for the interface and the number of
endpoints.

* Endpoint descriptors : They describe endpoint address, direction and type,
maximum packet size supported and polling frequency if type is interrupt
endpoint. There is no descriptor for the default endpoint (endpoint 0) and it is
never counted in an interface descriptor. Endpoint descriptor contains
information required by the host to determine the bandwidth requirements of
each endpoint.

¢ String descriptors : They are optional and provide additional information in

human readable unicode format. They can be used for vendor and device names
or serial numbers.

12.4.10 Device Controller

The USB device controller is nothing but a microprocessor, microcontroller or a digital
signal processor (DSP) in the USB device. It controls many of the operations of the device.
It executes a program to respond various requests from the host.

Microprocessor 12-40 Bus Interface

12.4.11 Functions

The USB device provides various capabiltities to the USB host. For example, keyboard
device allows to provide input to PC. USB refers these capabilitites as functions. Functions
provided by USB I/O device can be classified into human interface device HID such as
input device (keyboard, mouse), printer device (printer, plotter), imaging device (scanner),
or mass storage device (CDROM, Floppy drive, DVD drive).

12.4.12 Enumeration

Whenever a USB device is attached to the bus it is recognized by the host. The host
system software identifies the capabilities of the connected USB device after required
handshaking between the host system software and the control endpoint. It then assigns
unique device number to the device. This process is known as enumeration.

12.4.13 USB Hub

Physically there exist one, two or four USB ports at the rear panel of computer. These
ports can be used to attach normal devices or a hub. A hub is a USB device which extends
the number of ports to connect other USB devices. The maximum number of user devices
is reduced by the number of hubs on the bus (i.e. if we attach 50 hubs, then at most
(77=127 - 50) additional devices can be attached. Hubs can be cascaded upto seven levels
deep. Hubs are always full speed devices. If the hub is self powered, then any device can
be attached to it. However if the hub is powered, then only low power (100 mA max)
devices can be attached to it. A bus powered hub should not be connected to another bus
powered hub. The Fig. 12.33 shows the USB hub and device attachments to it through
ports. The USB hub monitors USB signals, handles transactions addressed to it, and repeats

HOST PC
(Function) I
Keyboard
Upstream Port
Function (Function)
(pen) Port 1 Port 7 mouse
Function Function
(speaker) Port 2 HUB Port 6 (printer)
Function Port 3 Port 5
(mike) HUB
HUB

Fig. 12.33 USB hub

Microprocessor 12 - 41 Bus Interface

other transactions to respective device. USB hubs have status bits that are used to inform
the host controller the attachment and removal status on one of their ports.

Normally the physical ports of the host controller are handled by a virtual root hub.
The hub is simulated by the host controllers device driver and helps to unify the bus

topology. So every port can be handled in the same way by the USB subsystem's hub
driver. This is illustrated in Fig. 12.34.

a)

USB
Host Controller

é Y

Virtual Root Hub

\ ,

Device

Upstream
Downstream

Fig. 12.34 Hub connections with virtual root hub

Review Questions

List the features of PCI bus.

Write a note on PCI configurations.

Describe the PCI bus structure.

Explain the PCI commands.

Write a note on PCI arbitration.

Write a short note on configuration space of PCI interface.

Give the formats of status and control registers in the configuration memory.
Write a short note on parallel printer interface.

Explain the control and handshaking signals of printer interface.

What is centronics interface ?

© o NSO AR L

[y
<

Microprocessor 12-42 Bus Interface

11.
12.
13.
14.
15.
16.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Give the formats for status ports of centronics interface.
Draw the hardware for accepting 16-bit input using parallel port and explain.
“inin the interfacing of stepper motor through parallel port.
Explain the bidirectional operation of parallel port.
Draw the hardware for accepting 16-bit input using bidirectional parallel port and explain.
Laplain the interfacing of 8-bit ADC using parallel port
Explain the features of USB.
Give the details of USB connector with the help of diagram.
Tow USB data is generated ? Explain the encoding method used by the USB.
What is bit stuffing ?
Draw the flow chart explaining the process of generating USB data from the raw digital serial
data.
Write a short note on USB commands.
What do you mean by stop and wait flow control ?
Explain the USB system.
Write a short note on USB cables.
Explain the functions of USB host.
Draw and explain the interfacing of host and device.
Explain the functions of USB device.
Draw the diagram of hardware for USB device.
Write a note on USB descriptor.
Define : configuration, interface and end point.
Define functions.
What is enumeration ?
Write a short note on USB hub.

Qaa

The 80386, 80486
and Pentium Processor

—

13.1 Introduction to 80386 Microprocessor

The 80386DX is a true 32-bit microprocessor. It has 32-bit internal registers, a 32-bit
data bus, and a 32-bit address bus. The 32-bit address bus allows user to design systems
with (272) 4 gigabytes of main memory, while 32-bit data bus allows 4-bytes to be read
from, written to, or fetched from that memory at a time. Its main features are : Different
operating modes, new register set, expanded instruction set, memory management unit,
page translation mechanism, and task management functions.

One of the most interesting features of the 80386DX is its ability to operate in three
different modes :

1. Real address mode
2. Virtual 8086 mode
3. Protected virtual 8086 mode.

These three modes have their own significance. In real mode it functions basically as a
fast 8086 or real mode 80286. The protected virtual address mode (Protected mode)
operation provides paging, virtual addressing, multilevel protection and multitasking and
debugging capabilities. The protected mode is a very complex environment that requires
several segmentation and memory management unit related tables to be set up in memory
before it will work at all. The segmentation mechanism used in protected mode is too
different from that on the 8086 and 80186.

Before going to study operating modes it is necessary to see the functional units and
programming model of 80386DX. This chapter therefore begins with the architecture of
80386DX and it is further devoted to explain the read mode, the protected mode, and the
protected virtual 8086 mode of 80386, respectively. It also explains bus interface, memory
interface and 1/0 interface.

(13 - 1)

Microprocessor 13-2 The 80386, 80486 & Pentium Processor

13.1.1 Features of 80386
1. The 80386 is a 32-bit processor. The 32-bit ALU allows to process 32-bit data.

2. "+ has 32-bit address bus. So it can access upto 4 Gbyte @*) physical memory or
64 Tetrabyte (246) of virtual memory (Explained in the later section).

3. The 80386 runs with speed upto 20 MHz instructions per second.

4. ".he pipelined architecture of the 80386, allows simultaneous instruction fetching,
decoding, execution and memory management. Instruction pipelining, a high bus
bandwidth and on-chip address translation significantly shorten the average
instruction execution time of 80386. These architectural design features enable the
80386 to execute 3 to 4 million instructions per second.

5. It allows programmers to switch between different operating systems such as
PC-DOS and UNIX.

6. It can operate on 7 different data types :
a. Bit b. Byte c. Word d. Double word
e. Pword f. Quadword g. Tenbyte.

It has built-in virtual memory management circuitry and protection circuitry
required to operate an 80386 in these modes.

7. The 80386 can operate in real mode, protected mode or a variation of protected
mode called virtual 8086 mode. In real mode it functions basically as a fast 8086 or
real mode 80286. The protection mode operation provides paging, virtual
addressing, multilevel protection and multitasking and debugging capabilities.

8. The 80386 microprocessor is compatible with their earlier 8086, 8088, 80186, 80188
and 80286 chips. Virtually anything that runs under these microprocessors will also
run under the 80386.

13.1.2 Architecture of 80386DX
The internal architecture of the 80386 consists of six functional units :
Bus interface unit
Code fetch unit
Instruction decode unit
Execution unit

Segmentation unit

S

Paging unit

These units operate in parallel. Fetching, decoding, execution, memory management
and bus accesses for several instructions are performed simultaneously. This parallel
operation is called pipelined instructions processing. Fig. 13.1 shows instruction pipelining
in 80386. With pipelining, each instruction is executed in stages.

Microprocessor 13-3 The 80386, 80486 & Pentium Processor

As shown in the Fig. 13.1, bus unit is ahead of decode unit, decode unit is ahead of
exécution unit and execution unit is ahead of memory management unit. Thus the
processing of several instructions at different stages may overlap as shown in the Fig.13.1.
The pipelining drastically reduces the overall processing time and thus results in high
performance processing of 80386 instructions.

— Elapsed Time
Fetch 2 Decode 2 | Execute 2
80386
Bus Fetch 3 Fetch 5 | Fetch 6
Unit B\ V0 BEiEem o\
Decode 2 | Decode 3 | Decode 4 | Decode 5
Execultm Execute 2 | Execute 3 | Execute 4
o

Fig. 13.1 Instruction pipelining in 80386
Fig. 13.2 shows the functional units of 80386 and interconnection between these units.

Execution unit Segment unit Page unit
Registers Segment
registers
Barrel
shifter
Muitiply/
Divide Segment Page
translator translator
> ALU Bus unit
Bus
interface
Decoder Prefetch
queue
Instruction Prefetcher
queue
Decode unit Prefetch unit

Fig. 13.2 Functional units of 80386DX

Microprocessor 13-4 The 80386, 80486 & Pentium Processor

-

Bus i_nterface unit

The Bus Interface Unit is the 80386DX’s communication with the outside world. It
provides a full 32-bit bi-directional data bus and 32-bit address bus. The bus interface unit
is responsible for following operations :

1. It accepts internal requests for code fetch and for data transfers from the code fetch
unit and from the execution unit. It then prioritize the request and generates
signals to perform bus cycles.

2. It sends address, data and control signals to communicate with memory and 1/0
devices.

3. It controls the interface to external bus masters and coprocessors.

4. It also provides the address relocation facility.

Code prefetch unit

The code prefetch unit fetches sequentially the instruction byte stream from the
memory. The code prefetch unit uses bus interface unit to fetch instruction bytes when the
bus interface unit is not performing bus cycles to execute an instruction. These prefetched
instruction bytes are stored in the 16-byte code queue. A 16-byte code queue holds these
instructions until the decoder needs them. The prefetcher always fetches instructions in the
order in which they appear in the memory. In fact, the prefetcher simply reads code one
double word at a time, not caring whether it’s bringing in complete instructions or pieces
of two instructions with each access. When jump or call instructions are executed, the
contents of the prefetched and decode queues are cleared out. In this case, prefetcher again
starts filling up its queue. If the first ii.ztruction after a jump is a DIV, or some other
instruction that takes several cycles without bus cycles, the prefetcher can catch up quickly.

Code prefetches are given a lower priority than data transfers. If memory access is
without any wait state, prefetch activity never delays execution. Due to prefetch activity
processor spends practically zero time waiting for the next instruction.

Instruction decode unit

The instruction decode unit takes instruction bytes from the code prefetch queue and
translates them into microcode. The decoded instructions are then stored in the instruction
queue.

Execution unit

The execution unit reads the instruction from the instruction queue and executes the
instructions. It consists of three subunits : Control unit, Data unit and Protection test unit.

1. Control unit : It contains microcode and special hardware. The microcode and
special hardware allows 80386DX to reduce time required for execution of multiply and
divide instructions. It also speeds the effective address calculation.

